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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Many-body optics 
IV. The total transverse response and et&, O )  

R. K. BULLOUGH 
Department of Mathematics, University of Manchester Institute of Science 
and Technology, P.O. Box No. 88. Sackville Street, Manchester 1, England 
MS. received 14th April 1970 

Abstract. I t  is shown that besides the optical modes which can be excited by 
light there can be additional transverse electromagnetic modes in a molecular 
fluid. These can be excited by incident transverse currents but are not then 
excited alone : it  is shown that the total transverse optical response is composed 
of two parts, a translationally invariant part (the virtual response) in which k 
and w are free, and a second part (the real response) which depends on the 
surface geometry. 

The  virtual response can be expressed in terms of a single dielectric con- 
stant c t (k ,  w ) .  A formula for cY(k,  w )  for a molecular fluid is given in terms of 
cluster integrals to all orders; it is a natural counterpart of the formula for 
e,(k,  w )  given previously; but E&(&, w )  and eI(k ,  w )  coincide only in the complex 
dielectric constant approximation when they are both now identical with the 
square of the transverse refractive index. The surfaces of singularity (essentially 
poles for given k )  of the transverse virtual response are exactly the transverse 
dispersion relations obtained previously for all choices of w .  

The virtual transverse modes are not excited by incident light: the virtual 
response to light is zero. The additional real response to transverse currents 
is a consequence of the optical Extinction Theorem and the breakdown of 
translational invariance; it depends on e, w,  the surface geometry and the 
transverse refractive index mt(w).  When the transverse probe is light the real 
response coincides with the transverse optical response calculated previously. 
Thus the real response is an essential part of the total response. 

All the results are generalized to the case when k is not normal to the surface 
of the system: only the real response is changed and it changes only in so far 
as it depends on that changed surface geometry. The longitudinal response 
considered previously only for k normal to the surface now also consists of two 
parts : the translationally invariant virtual longitudinal response is unchanged but 
is accompanied by a transaerse real response. This sort of result must apparently 
mean that when k is not normal to the surface (transverse) light can couple to 
those longitudinal modes which satisfy the longitudinal dispersion relation 
calculated previously. 

We discuss the existence of optical normal modes in a molecular fluid. We 
conclude that there are no optical normal modes in any geometry within the 
precise terms of outgoing boundary conditions considered : all such modes 
would be real modes and these scatter light out of the surface. But we also 
show that we can at least find longitudinal normal modes within a rectangular 
dielectric cavity if acausal boundary conditions are admissible. 

We extend the theory of the total virtual response in the following paper V. 

1. Introduction 
I n  the previous paper (Bullough 1970 a-to be referred to as 111) we developed 

the theory of forced longitudinal modes in a molecular fluid confined to a region V. 
The forcing probe was an incident charge density and the region V was a parallel- 
sided slab. We could consider only those modes whose wave vector direction k lay 
parallel or anti-parallel to the axis of the slab because of the constraint of the optical 
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Extinction Theorem. This constraint in general depended on tbe f i rm of the surface 
C of V but vanished for longitudinal modes in the slab when k was parallel or anti- 
parallel to the slab axis. Because of this the system could respond to the probing charge 
density with forced longitudinal modes and a linear response function independent 
of X could be defined in terms of a longitudinal dielectric constant e l (k ,  w ) ;  accep- 
table normal modes with axial 6 lay on the surfaces e l (k ,  w )  = 0 and this was the 
longitudinal dispersion relation of the earlier paper (Bullough 1968-to be referred 
to as I). 

In  contrast the system could also respond to incident light with forced transverse 
modes. The  wave vectors of these satisfied the transverse dispersion relation of I, 
but the modes nevertheless satisfied a linear response relation which depended on the 
refractive index m,(w) and very significantly on C even when k was axial. This 
contrast sharply exposes the questions of whether a natural transverse dielectric 
constant E t ( k ,  w )  can be defined and whether a (k, w)-dependent linear response 
relation for forced transverse modes exists. 

It is easy to see how to proceed, however, once we acknowledge that there are two 
sorts of transverse probe and that there should therefore be two sorts of transverse 
response function.? The  transverse response considered so far is a response to in- 
cident light: the longitudinal response is a response to a primary probe which is 
not an electric field but a free-charge density. We can only impose free-charge density 
on a molecular fluid by firing free charge into the system. A moving charge system 
is compounded of both longitudinal and transverse currents. It is the purpose of 
this paper IV, now, to investigate the response of the system to such an imposed 
transverse current density j , (  k ,  w ) .  

We shall find that the principal problem facing us in this program is that of satis- 
fying the optical extinction theorem. For there is now no choice of wave vector 
direction k which can eliminate this constraint from the theory. We shall nevertheless 
manage to show that we can use the surface C of V to couple external light to the 
system and still be able to introduce a surface-dependent (k, w)-dependent response 
to an arbitrary transverse field. 

We shall now attack this complex of problems. We adopt the notation, results 
and definitions of I11 without additional remark. The  plan of this paper IV is already 
outlined in 5 1 of I11 and we shall finally summarize all of this material at the end of 
the following paper (Bullough 1970 b-to be referred to as V). 

2. The transverse dielectric constant q ( k ,  w) 

We impose an arbitrary external solenoidal (transverse) current density j , (  k, w )  
on V and its exterior; its transform j t ( k ,  w )  has k and w as free variables. Since 
j t ( k ,  w )  must describe the motion of point charges there will ultimately be a condi- 
tion describing that motion connecting k and w ,  but that condition need not concern 
us here.$ These primary currents generate a secondary transverse field E,(x,  w )  with 
transform E,(k,  w ) ,  with k and w free so that, although Et($, w )  satisfies 111, 

t Equations (2.19)-(2.23) below show that each response function is a different aspect of 
the total response function (2.22) which contains both of them. 

$ The Fourier transform of ea($ -ut) is 2xes(w - k . v )  for a point charge e iwel l ing  with 
velocity v ;  the transverse current density mode labelled by (k, w )  is 2nev.  (U - kk)6(w - k. v )  : 
the condition, which is a dispersion relation, is w = k . v .  By working in (k, w) space the 
Lienard-Wiechert potentials are built into the expressions for the probing fields without the 
complication which surrounds these potentials in (x, t )  space. 
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equation (2.9a), it does not satisfy 111, equation (2.9b): indeed equations (2.9) of I11 
are replaced by 

divE,(x, w) = 0 (2.lu) 

ik . E,(k, w )  = 0 (2.2a) 

( V 2 + k O 2 ) E t ( x ,  w) = - 4 ~ i k ~ c - ~ , ( x ,  w) (2.lb) 
with transforms 

( k 2 - k o z ) E t ( k ,  U )  = 4~ik ,c -~ j , (k ,  U ) .  (2.2b) 

From 111, equation (3.3), with P,(k, w) transverse to 6, we have? 

P,(k, U )  = a(w)(E,(k, w ) + ( k o 2  U-kk) .4irnPt(k, ~ ) ( k ~ - - k ~ ~ ) - ~ +  %-nP,(k,  w) 

I(k, - k' ;  w) 
+(kO2U-kk)  .*I Pt (k', w) dk'. 

(243  ~ ' 2 -  ~ , 2  

Whilst there may be pathological possibilities in (2.3) we have only the following 
straightforward solution. The solution of (2.16) is 

( 2 . 4 ~ )  

in which we assume j t (k ,  w) = O(k-K, )  or better near k = k, for convenience. 
This equation we write in the form 

E,(k, w) = Et,(k, w) +E, , (&,  ~ ) k o - ~ 6 ( k  -ko). (2.4b) 

If we restrict P,(k,  w) to modes with 6 parallel to the axis of the slab V ,  the integral 
in (2.3) is transverse to 6 and, from the definition in 111, equation (3.4), I(k, - k'; w) 
always has a factor 6(K-ko): the whole last ter? in (2.3) is then transverse to 6 and 
has 6 ( k - k , )  as a factor. We now choose Eto(k, w )  in (2.4b) to eliminate this last 
term in (2.3) essentially as the extinctjon theorem eliminates the free forcing field in 
111, 5 2 (we look at the form of Et0(k ,  U )  again later). This choice now still leaves 
E,,(k, U ) ,  which is the secondary field generated by the current density j t ( k ,  w) in 
the absence of the fluid, as the effective transverse forcing field. 

Indeed the response with ( k ,  w) free variables is now given by 

h f i P t ( k ,  CO) = [4~fia(w){l -4rrnc((w)ko2(k2-ko2)-'- &nz(w) 

-na(w)Jt(k ,  w)}-']Etl(k, w) (2.5) 

in which we can include J,(K, w )  by noting, as in 111, that it merely augments the 
Lorentz 4n/3 term. We could of course define a ( k ,  w)-dependent transverse res- 
ponse function by the square bracket in (2.5). This equation is in fact directly com- 
parable with the longitudinal response relation 111, equation (3.8), and indeed the 
square bracket has the property comparable with 111, equation (3.10), that the zeros 
of its denominator are the roots of the transverse dispersion relation (2.56) for mt2. 
However, essentially the same considerations which led us to the expression I11 (3.14) 
for cl(k, U )  can lead us to a closely related form for et(k, U).  We argue as follows. 

t We continue to omit J t ( k ,  w )  here. Since k.Pt = 0 we can simplify one of the terms in 
(2.3) but certainly not the integral since k.Pt (k ' ,  CO) # 0 for general k'. 
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We introduce a pseudo-macroscopic transverse Maxwell field vector Et( k, w) 

( 2 . 6 ~ )  

which will satisfy 

{ - k2 +Et(k, w)ko2}fit(k, w) = iko4m-ljt(k, w) 

and from (2 .4~)  and (2.4b) we find that 

Et(k, U )  = (k2-ko2)(k2  -Et(k, W)ko2}-1Et,(k, U ) .  (2.6b) 

We define Et(k, w) by 

{Et(k, U )  - l}Et(k, w) = 4nnPt(k, 0). (2 .6~)  

With this definition and the response function (2.5) we now find after a little manipu- 
lation that 

Et(k, w ) - 1  = 4nna(w)(l- & - n ~ ( w ) - n x ( w ) J ~ ( k ,  w)>-'. (2.7) 

We can also now rewrite the relation (2.5) in the form 

a relation immediately evident from (2.6~)  with (2.6b). 
The  quantity in square brackets is a transverse response function indicating the 

response to the secondary transverse field Etl(k, w): it is very different from I11 
(2.15) which is the response to a primary transverse field given by I11 (2.9); and in 
particular I11 (2.15) depends on the geometry of the surface X of V whilst (2.8) does 
not. This is of course because (2.8) does not contain the response to the total trans- 
verse field : the surface geometry is concealed in what is necessarily the carefully 
chosen form of the second of the two fields on the right-hand side of (2.4b) if the 
response in P ,  is not to be changed. 

In  terms of the primary probing field j t (k)  w), (2.8) takes the form 

4nnPt(k,  U )  = E t P ,  - 1 ]4aikoc-ljt(k, w). 
[k2 - ko2Et(k, w )  

This is the form comparable with 111 (3.15b)) especially when we use the continuity 
equation 

I n  each form of the response function in the square brackets of (2.5), (2.8) or (2.9) 
we see that the surfaces of singularity are the transverse dispersion relation (2.5b) : in 
(2.8) and (2.9) these surfaces are obviously the surfaces 

- iwp(k, w) + ikjl(k, w) = 0. (2.10) 

k2--Et(k, w)ko2 = 0.  

The surfaces of singularity of Et(k, U ) -  1 are not singularities of the response 
function: neither these surfaces nor the strict zeros of et(k, w) appear to have any 
physical significance although the zeros of Et(k, w) are apparently very little different 
from the longitudinal dispersion relation of I11 (2 .5~) .  Moreover when c -+ CO the 
photon propagator in (2.5) is eliminated and the poles of the response function are 
close to the resonances of the refractive index expression m,"( w) - 1 and the response 
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I11 (2.15). But this is because k is effectively small when it has the value m,(w) K O  
and m,(w) E l.5.t 

Comparison of (2.7) with I11 (3.14) shows that we have now reached the two 
relations 

Et,l(k, U ) -  1 = ~ T Y Z N ( ~ ) { ~  - $ ~ T Y z N ( ~ ) - z N ( c o ) J ~  l(k, U)}- '  (2.11) 

for the molecular fluid. This is one of the main results of the two papers I11 and IV. 
Observe that the J,,,(K, w )  are cluster expansions containing intermolecular correla- 
tion to all orders. Note also thatj: 

%(O, U) = 4 0 ,  w )  

and for small k the two dielectric constants are little different. These differences are 
of vital importance in the theory of the binding energy of the molecular fluid, how- 
ever, as is already implicit in paper I1 (Bullough 1969 a-to be referred to as 11) of 
this series (and cf. also Bullough and Obada 1969 a,b and V which follows). This 
feature will be elaborated in more detail later. 

In  reaching the symmetrical transverse-longitudinal expressions (2.11) we have 
partly been motivated by the wish to find expressions for (k, w)-dependent dielectric 
constants for the molecular fluid comparable with those already obtained for other 
systems. For these are very suitable for establishing compact expressions for physical 
applications of the theory (cf. 11, V and Bullough and Obada 1969 a,b). Helpful 
guidelines are implicit in some of the previous work on (k, w)-dependent dielectric 
constants: e.g. Lindhard (1954), Born and Huang (1955), Nozikres and Pines 
(1958 a,b,c, 1959), Ehrenreich and Cohen (1959), Adler (1962), Pines (1963), Schultz 
(1963) and Mahan (1965) are all helpful for a comparison. In  particular we can now 
easily establish the precise formal equivalence of our definitions (2.6~)  and I11 (3.11b) 
to those of Kozikres and Pines (1959) and Adler (1962). 

For the molecular fluid we define induced current densities by 

j t , tnd(k,  w )  = iwnP,,,(k, w )  (2.12) 

these are the changes in the 'displacement currents'. This definition enables us to 
write (2 .6~)  immediately, and I11 (3.11b) after using the continuity equation, in the 
form 

- ik,{Et,l(k, w )  - l}Z?t,l(k, w )  = 4 ~ c - ' j ~ , < ~ ' ( k ,  w ) .  (2.13) 

This is exactly$ the definition used by Nozikres and Pines and by Adler. 
This being so it is important to notice that as dielectric constants which determine 

the longitudinal response of I11 (3.15) and the transverse response of (2.9) above the 
formulae (2.11) are not complete. Thus we must now develop the theory of the total 
response function: this means we must look next at the role of the second field in 
(2.4b) which satisfies the dispersion relation of the free field. 

So far we have viewed this field as an imposed field just sufficient to eliminate the 
surface integral terms in (2.3). This situation is a physically possible one: we require 

I Because the expression I11 (2.5b) for mt2(w) -1 is only an implicit relation for nzt2(w)  
the resonances of mt2((w) -1 will be rather complicated. Otherwise mt(w)ko is obviously small 
for small enough ko except at a resonance of mt(w) .  

$ Compare the brief remarks a t  the end of I11 5 3 and see the following paper V 9 3 for 
the complete discussion. The result is already reported in I1 (7). 

5 Note that the fields E t , l  in (2.13) have to be interpretedas thepseudo-Maxwell fields kt,t 
and are not the forcing fields: equation (2.13) is not an explicit response relation. 
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to eliminate a free field inside V ;  and we do this by imposing a second free field 
inside V with just this property. However, a physical field which is a free field in V 
can only be imposed from outside V and analysis then shows that the equations can 
be solved only with at least one mode of the free field travelling into V. The physical 
picture is one of transverse currents imposed throughout space in the form of moving 
charges striking V and these currents are accompanied by incident light. This cannot 
be the only solution to the problem since there is no physical reason why we should 
not simply fire charge into V without additional incident light.? 

The  solution to this dilemma is the following: it is sufficient to set up the field 
E , ,  inside V only, and this can be arranged by choosing as the total transverse field 
a linear combination of the two solutions (2.5), with wave number k, and 111 (2.4b), 
with wave number m,k,. We can if we like think of the incident field E , ,  of wave 
vector k inducing a response P, ,  of wave vector k by (2.5) : then P, ,  induces the free 
field E , ,  in V with wave number k,; and this free field induces a response P , ,  with 
wave number m,k, by a response relation like I11 (2.15). 

We therefore first choose the trial solution1 

P,,(Iz, ,  w) + (277)3m,-2k0-2~,,(&, ~ ) s ( K  - m,FE,)G(& -ti,) (2.14) 

where P, ,  is the response to a single mode E , , ( k l ,  U )  according to (2.9), and 
P, , (k ,  U )  satisfies 111 (2.11). The  field E generated by P , ,  according to I11 (2.11) is 
exactly to cancel the field E , ,  which it is necessary to impose in V in order that 
P, , (k , ,  w )  is an acceptable solution: thus the surface integral terms associated with 
P, ,  and P , ,  are simply to cancel each other and the condition for this should be 
sufficient to determine P, ,  completely. 

~ , ( k ,  w) = - (~77)4[exp{- i(m, - l ) k , c }~ (k  - kok1)(1 + m,) 

From 111 (2.11) the Fourier transform of the field E generated by P , ,  is 

+exp(i(m,+ 1)k,d}S(k+k0&,)(1 -mt)](m,2 - l)-lPto(kl, U ) .  ( 2 . 1 5 ~ )  
The  free field generated by P,,(k,  w) has a transform which we write slightly sym- 
bolically in the form 

(kO2 U - k,k,)  . na(o) l (k , ,  - k, ;  w ) ( k I 2  -ko2)-1Ptl(kl, w) 

= k , ~ n x ( w ) l ( k , ,  - k , ;  w)(k,2 -k ,2 ) - IP t1 (k1 ,  U) .  (2.15 b)  

This form is so because P , ,  is a single mode with wave vector k ,  if E, ,  is, and we 
continue to consider the slab V with axis in the direction of k, .  

The symbol l(k,, - k , ;  w) in (2.1%) as calculated from 111 (3.4) is k-dependent, 
and symbolizes 

~ ( k , ,  -kl; 0) (277~3[-277exp~i(~1-~,)c)~(k-k,&,)( i  +klk0-1) 
-27 exp{i(k, +k,)d)S(k+k,&,)(l -klkO-l)]. (2.16) 

The  two free fields in (2.15) are to cancel and this is obviously impossible. We 
therefore replace the trial solution (2.14) by the new trial solution 

P,,(kl, w) + ( 2 7 ~ ) ~ m + , - ~ k , - ~ P , ~ ( & ~ ,  w)6(k - m,K,)(S(& -&,) + R ( k l ,  w)S(& +&,)}. 
(2.17) 

7 There is of course no a priori physical objection to light leaving the surface of V :  this 

$Which omits no factors. cf. I11 ( 2 . 8 4  and the discussion of notation there. 
would be light generated at the surface by the moving charge. 
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We can now choose A so that the coefficients of S ( k + k o k l )  in the sum of (2 .15~)  
and (2.1%) vanish separately. Then, given j t (  kL, w )  as primary single mode probe, 
P,(k, ,  w )  is fixed by (2.9) and R(k, ,  U )  and Pto(k , ,  U )  are fixed by the two equations 
implicit in the elimination of the sum of the two expressions (2.15). 

We have thus demonstrated that current forced transverse modes are acceptable 
modes in Y if, and only if, every forcing field modej,(k,, w )  of wave vector k ,  (with 
k1 along the axis of the slab V )  generates the three modes which are described by 
(2.17): one of these, P,,(k, ,  U ) ,  has wave vector k ,  and is related to j t ( k , ,  w )  by 
(2.9): the two additional modes have wave vectors + m,kok, and the wave numbers 
mtko are determined at the frequency w by the dispersion relation I11 (2.4b) for the 
refractive index mt( w ) .  Because mt( w )  satisfies the transverse dispersion relation 
these two additional modes are real photon-like modes: we shall refer to them as real 
modes, Because the mode P, ,  has a free wave vector k ,  not fixed by w it is virtual, 
photon-like, and we refer to it as a virtual mode. We have thus shown that the res- 
ponse to a single mode transverse current probe j , (k , ,  w )  normally incident on V 
consists of one virtual mode of wave vector k ,  and frequency w and two real modes of 
wave vectors & m,kok, and frequency w .  More generally the real modes depend on 
the surface geometry whilst the virtual modes do not. 

The results for P , ,  in terms of P, ,  and for 11 are 

and 
A(k, ,  w )  = -[exp(-i(k,c-m,kod)}(l +klko- l ) ( l -mt)  

- exp{ - i(mtkoc - k,d))( 1 - klko -I)( 1 + mt)] 
x [exp(- i(klc+mtkod)}(l + k l k o - ' ) ( l  +mL) 
- exp( - i(mtkoc +k,d)}(l - k lkO- ' ) ( l  - mJ1-l .  (2.1%) 

One immediate check is that when k, -+ K O  

in precise agreement with I11 (2.14~~). 
The  total response to jb(kl,  w )  can now be written in the form 

4nnP,(k, w )  = 4nn[Pt l (k ,  w )  - (2n)3mt-2ko-2Pto(kl, w )  

x S(k - mtko)(G(k - 6,) + AS(6 + k,)}] 

Here j t ( k ,  w )  is supposed to be the single mode expression 

j t ( k ,  w )  = ( 2 ~ ) ~ k - ~ 6 ( k  - k 1 ) 6 ( k  -kl)gt(k, w )  

(2.19) 

(2.20) 
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in which gt(k, w )  is a smooth function, and a*(k) are the operators of I11 (2.15) 
now changing the wave number k, of j tJo m,kOAand in the case of U-( k) also changing 
the direction of the wave vector from k, to -k,. 

The expression s(C; k, U )  is the combination of the two square brackets in 
(2.18~):  when k is KO&,, #(E; k, w )  is exactly the quantity $2; k, w )  in the res- 
ponse relation of I11 (2.15) and which is determined by I11 (2.14b). Thus we have 
been able to generalize that response relation to include the response to a single mode 
transverse current probe of arbitrary wave number k and frequency w but still with 
the special wave direction k,. 

Indeed we can now work consistently with a transverse single mode electric field 
probe of wave vector k, : 

4 ~ i k , c - ~ ( 2 r r ) ~ k - ~ 8 ( k  - k, )8(k  - kl)gt(k, w )  
E,(k,  w )  = __- (2.21) 

k2 - kO2 

We arrange that gt(k, w )  = O(k-k,) or better in the neighbourhood of k = k, 
so that (2.21) passes smoothly into the free-field probe. The response relation (2.19) 
now takes the form which is perhaps the principal result of the two papers I11 and IV : 

(2.22) 

with et(k, CO) given by (2.7), m: given by (2.4b), S(Z; k, w )  the combination of the 
two square brackets in (2.18a), R(k, w )  given by (2.18b) and a*(k) the operators 
described under (2.20). We have assumed that k is in fact k, parallel to the axis of 
V as (2.21) implies. We observe that when k, --f K O  the total response relation (2.22) 
takes the form 

4.rrnPt(k, CO) = (mt2- l)S(C; kohl, w ) { a + ( k ) + A ( k o k l ,  w ) ~ - ( k ) } .  E t (k ,  w )  (2.23) 

and, because s and A are exactly the quantities in I11 (2.14), this result is indeed 
exactly the response relation I11 (2.15). 

We have shown in (2.22) that the total transverse response to a transverse electric 
field probe is made up of two natural parts. One part describes the virtual response 
and is independent of the surface geometry of V :  the other part describes the real 
response and depends very much on the surface geometry of V. When the probe is 
light satisfying the free-field dispersion relation there is no virtual response and the 
total response is the real response. But this limit (2.23) of (2.22) shows that the real 
response is an essential part of the total transverse response. It can be neglected only 
when k = k, $ k, for the virtual contribution to the square bracket in (2.22) is 
O(k,k,- l )  and the real contribution is O(k,2ko-2)  when k, $ K O :  the contributions 
to the total response are then O(kok, - l )  and 0(1) respectively. For k, < K O  the 
contributions are very comparable, and for k1 2: k, the virtual response is negligible. 
This is easily understood: if the transverse probe is an incident charged particle of 
velocity v ,  vc- l  2 kok1-l  and k, $ K O  is the non-relativistic region. The  real 
response is then a relativistic correction to the non-relativistic virtual response : when 
k, 2: k, the real response dominates the situation as we expect. Thus the real res- 
ponse should be an important feature in the theory of external Cerenkov radiation: 



734 R. K. Bullough 

only the contribution of the virtual response to this has been calculated so far and this 
is reported in I1 (11-equation (9)). 

These results are inevitable if we believe that (2.21) applies to arbitrary transverse 
electromagnetic probes not excluding light : for in the absence of the real response 
there is no response whatsoever to light when k ,  --f k ,  in (2.22). It should be possible 
to devise a theory in which the transverse probe can pass smoothly into a light wave: 
the methods of von Weizsacker (1934) and Williams (1935), for example, invoke the 
idea that a relativistically fast charged particle approximates to a system of light waves 
(cf. Heitler 1954-p. 414). Equation (2.22) is the solution to this problem. Indeed 
for the simple geometry considered in this 4 2 of k = k ,  parallel to the axis of the slab 
we have completely solved the immediate problem posed in this paper IV. For we 
have constructed a transverse response theory for arbitrary electromagnetic waves 
which is compatible with the extinction theorem; and it is also compatible with the 
surface-dependent optical response as this was computed in 9 2 of the previous paper 
111. 

We extend the solution to arbitrary directions h of k in the following 4 3 ; but 
the result of (2.22) already throws up a number of points which we can usefully 
discuss now. The  main point is that (2.22) exhibits a natural division between a 
translationally invariant and a non-translationally invariant contribution to the total 
transverse electromagnetic response. The rigorous construction of a translationally 
invariant theory in many-body physics is a problem of interest in its own right, and 
we should like to discuss this. But the natural division exhibited by (2.22) is also 
important because we reported in I1 (cf. also Bullough and Obada 1969 b) closed 
expressions for the binding or free energies of a molecular fluid which depend solely 
on the total electromagnetic response function: if our understanding is correct the 
total virtual response should yield the translationally invariant (i.e. extensive) part 
of the total binding energy, whilst the surface-dependent part should yield a surface 
energy and permit an ab initio calculation of the surface tension. No analysis of this 
surface-dependent contribution has been made yet, but the results of I1 show a rather 
complete derivation of the fully retarded bulk binding energy of a molecular fluid 
from the translationally invariant part. This theory differs in important respects 
from the semi-phenomenological theories of Lifshitz (1956) and Dzyaloshinskii et al. 
(1961) and this is the subject matter of V. Now we look at the problem of constructing 
a translationally invariant theory. The  rest of this 4 2 is concerned with this problem. 

One feature to note immediately is that response function theories are scattering 
theories and these are very sensitive to surface effects: binding energy theories are 
much less sensitive to these. Thus although the binding energy theory reported in 
I1 easily ignores the rather subtle surface effects the response theory shows that the 
real modes, certainly induced by the surface of V,  nevertheless exist throughout the 
whole interior of V.  They are little damped and then only by scattering from the 
interior of V. 

On the other hand we might interpret the real modes as modes induced by breaking 
the continuous group of spacial translations. They are bosons (in the sense that the 
polaritons of Hopfield (1958) are bosonst) ; they exhibit a zero-frequency excitation 
(&w is a root of m,(w)w = ck for fixed K ,  and w = 0 is a root at K = 0 ) ;  thus they 
have these features of the symmetry-breaking bosons of Goldstone (Goldstone et al. 
1963, Brout 1965). These modes are not obviously ones which restore a feature of 

t The polarization diagram approximation of Bullough et al. (1968) is equivalent to 
Hopfield’s boson approximation (Bullough and Thompson 1970). 
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the broken symmetry, however. We shall find later that the real modes are the simp- 
lest ones induced by the surface of V :  there are certain additional modes which appear 
in the complete analysis of the external scattering at optical frequencies.t 

It is not of course a new result that we must break translational invariance in 
order to couple external light to a material system; this is also so in the Maxwell 
phenomenological scheme. The  result (2.23) is actually a striking generalization of 
that scheme; but it is more than this since it involves actual reinterpretation of terms. 
T o  see this let us construct a translationally invariant theory by focusing attention on 
the virtual modes and dropping the real modes entirely. We shall find that modes 
like the real modes are normal modes in this theory. This is conventional many-body 
physics and important for this reason. For convenience of subsequent reference we 
call it ‘virtual mode theory’. 

We observe first that (2.7) and the transverse dispersion relation of 111 (2.5b) 
(and see I1 (6)) together show that 

Et(mtk0t;, w )  = mt2(w) (2.24) 

for any k. Then (2.6a) shows that ifj,(k, w )  = 0 

{ - k 2 + E t ( k ,  w)ko2}Et(k ,  w )  = 0 (2.25) 

and this has a solution (cf. I) 

Then (2.6~) means that 
m,”(w) - 1 

nP,(k, = ( 4n j Et(&, 

( 2 . 2 6 ~ )  

(2.26b) 

(2.27) 

and (2 .6~)  means that E, (k ,  w )  and P, (k ,  U )  are normal modes which satisfy in (x, w )  
space$ 

( v2+mt2(w)k02}Et (x ,  U )  = 0 ( 2 . 2 8 ~ )  

(2.28 b)  

The second form (2.28b) is a forced oscillator equation for the field E: the induced 
dipoles are the sources and drive the field as in Lamb’s (1964) theory of the maser, 
for example. Then (2.6b) shows that the modes are normal modes in the sense that 
E, (k ,  w )  is a finite internal response for a zero external field E, , (k ,  w ) .  Since the 
modes are normal they couple to no external field: in particular they do not couple to 
light. However, this coupling can now be achieved by breaking translational invariance 
and appealing to Maxwell’s phenomenological boundary conditions. This theory 
completely agrees in its final consequences with the results of I1 9 2 for the strictly 
optical response. I t  is unsatisfactory only because it invokes the separate hypothesis 
of Maxwell’s phenomenological boundary conditions across the surface. It is therefore 

t These are associated with the surface terms of Bullough and Hynne (1968) and intuitively 
with the scattering of light across the surface. 

$However, we already see the theory is incomplete: m,(w) determined by (2.26b) is 
complex through external scattering and at this delicate level we cannot obviously construct a 
translationally invariant theory. 

or 

(v2+kO2)zt(x, w )  = -4xkO2nPt (x ,  U ) .  
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remarkable that this theory is constructed from our virtual modes: for the equa- 
tion (2.22) shows in a much more natural way that the microscopic theory, with no 
surface boundary conditions, is a limiting consequence of the real modes as k --f K O .  
This is the reinterpretation we spoke of. 

These remarks justify the choice of the virtual response (2.8) or (2.9) as the total 
translationally invariant transverse response and justify the virtual mode theory as a 
translationally invariant theory. However, this can be no more than a definition agree- 
ing with less sophisticated methods unless we can explicitly eliminate the real response 
in the limit of a translationally invariant theory. All the evidence we have is that it is 
not possible to construct a translationally invariant theory in this sense without wholly 
rejecting outgoing boundary conditions.? A number of points in this connection may 
be worth recording here. 

I n  order to eliminate external sources we can hope to set up a normal mode 
theory for a finite or infinite region V. This is the problem of the existence of solu- 
tions of the homogeneous fundamental integral equation I11 (2.1) and of interest in its 
own right. We look at this problem and the connected problem of eliminating the 
real response when V is infinite and translationally invariant now. We also return 
again to the problem of normal modes in a finite box in $4 after we have considered 
the case of oblique modes in § 3. 

At first sight (2.22) might suggest that modes which satisfy (2.268) are always 
normal modes-just as they are by (2.8) or (2.9) in the virtual mode theory. However, 
analysis shows that, although the virtual responses (2.8) or (2.9) diverge when 
K -+ m,( w)ko,  the total response from (2.22) is a finite response for a finite applied 
field with this K ;  the response is zero for zero applied field, and the limit of (2.22) 
actually exists when k -+ m,( w)k,.j: 

Thus modes which satisfy (2.26) are not normal modes when the total response is 
considered. Normal modes are modes possible in the absence of any probe: to find 
any of these we need now to look at the singularities of (2.22). 

These occur at the singularities of m," - 1, s( C ; k ,  U )  or of A( k,  w )  : singularities 
of Et(k, w )  (if these are infinities) are not singularities of (2.22). Thus we need the 
infinities of m: - 1, the roots of 

(2.29) 

[exp( - i(k,c + mtkod))( 1 + K l K 0 - ' ) (  1 + m,) - exp{ - i(mtKoc + K,d))( 1 - Klko-') 
x ( l - m t ) ]  = 0. (2.30) 

The last condition would correspond to creating a mode in the direction - k instead 
of k for zero applied field: thus we do not consider it further. We can presumably 
also dismiss the infinities of m,"( w )  - 1 since the wave number of the associated real 
modes would be undefined. They should in any case be in the lower half w-plane 
since they are observable resonances with a finite scattering width. Thus only (2.29) 
remains. 

This condition is actually the usual type of condition for finding normal modes 
in a finite box: one surrounds the box with perfectly conducting walls (for example) so 

t cf. (2.32) below and the acausal conditions which admit normal cavity modes in 5 4. 
A limiting sequence of dielectric cavities is translationally invariant. 

5 The limit continues to depend on c and d even though, for example, A -+ 0. 

! 
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m, in (2.29) -+ CO. One then chooses 2mtk,(c+d) = 2k(c+d) = 2 v n  with v an 
integer fixing k.? This argument cannot be applied here since we do not apply 
boundary conditions at the surface of V but only at infinity. 

Equation (2.29) is actually satisfied by m, = 0. However, this is not a condition 
for transverse normal modes. One can check that when m, - + O  (from above$) a 
transverse light wave normally incident on the parallel-sided slab -c 6 x < d is 
totally reflected. At the same time the roots of mt(w) = 0 fix frequencies at (or 
certainly very close to) those of the acceptable longitudinal normal modes of I and 
111, $ 2 ,  and to this extent the normal modes are longitudinal. 

From this discussion we infer that transverse normal modes are not admissible in 
any finite volume V without either the formal application of boundary conditions 
across the surface or the physical inclusion of additional external sources. We can 
infer that if V is the slab the homogeneous integral equation I11 (2.1) has no trans- 
verse solution and we confirm this again in $4 .  We thus fall back on virtual mode 
theory for a normal mode theory. This is physically sensible: any transverse mode 
of wave number m,ko approaching the surface of V radiates out of this surface (unless, 
for example, it is not normally incident, is totally internally reflected and still evanes- 
cent outside V) .  The longitudinal normally incident modes do not radiate and so can 
exist as normal modes. This completes our present discussion of possible normal 
modes in a ‘box’. 

We now look at the problem of eliminating the real response by going to infinity: 
we still use the slab and set c and d --f a. We find no transverse normal modes and 
cannot eliminate the real response, and this is clearly associated with our original 
choice of outgoing boundary conditions. These mean that Jt (and indeed J J  are 
complex and m, is complex. Then although d --f CO causes no difficulty the phase 
factor exp{i(m,- l)k,c) in I11 (2.14b), for example, tends to zero. This means that 
the probing field E ,  must oscillate infinitely as c -+ CO in order that the optical dipole 
response P,, is finite. We expect E ,  as a field imposed at infinity to diverge when 
there is scattering from an infinite medium; but that it oscillates infinitely seems rather 
meaningless. From this we infer the reasonable result that outgoing boundary con- 
ditions are consistent only with the finite system.§ 

We have also noticed the following point. We can argue that the source of logical 
difficulty in going to infinity is that we start initially with the Fourier transform of 
exp(ik,r)r-l on a spatially finite region V and this is the source of the surface integral 
of the extinction theorem and of the unwanted integrals in I11 (3.3) and in (2.3) here, 
for example. Then we can argue that outgoing boundary conditions means w is 
(w+iS) with 6 > 0 and this eliminates all oscillatory terms from the surface of V 
when Vis all space. This is correct except for one circumstance : the Fourier transform 

exp(ik,r)r-l exp(ik . (x’  - x)) dx’ I, 
Only one condition emerges from (2.29) since we set the radius R of the cylindrical slab 

V to CO rejecting oscillatory terms of modulus 1. A second condition is needed, for modes 
with k = (0, 0, k,) are never possible modes of the box with conducting walls (see 5 4.). 

$ When mtz < 0, wz, is purely imaginary: we can take Re(mt) as non-negative since -Re(m,) 
is associated with the reflected mode. 

§ The slab is two-dimensionally inQnite by the choice R, the radius, + CO. We believe 
that as long as we consider modes with k parallel to the slab axis we need not concern ourselves 
too precisely with this limiifor R. On the other hand the example in § 4 shows that this 
limit is very relevant when k is oblique. 
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will not exist in general when k = 1 kj satisfies a dispersion relation. For, in particular, 
when w -+ w + is, k -+ m x (0 + iS)c-l and even when m is real there will be a contri- 
bution from the surface of V when V becomes infinite (as actual analysis of the limit 
shows). This means that we cannot eliminate the real modes or accept transverse 
normal modes in the infinite system this way. 

However, provided E,(k,  w )  + 0 in the basic equation (2.3) the same argument 
actually impljes that for real k the forced solutions (2.5) are the complete solution of 
(2.3) for all k when V is all space and it implies that there are no additional modes 
generated by any surface (now supposedly at infinity). Thus in the infinite system 
with real k the only forced modes are the virtual modes, and this is indeed the implicit 
assumption of all previous work on current forced (= virtual) modes. This picture 
is very much more artificial and much less complete than the argument which is 
summarized in the total response of the finite system in equation (2.22). I n  particular 
the argument on which this picture of the infinite system is based does not consistently 
admit normal modes which necessarily satisfy a dispersion relation as we showed in 
the previous paragraph. 

The  ultimate source of the difficulties surrounding the existence of transverse 
normal modes lies of course in the surface integral of the extinction theorem: this is 
intimately connected with the boundary conditions and these as we shall show later 
in this series are connected with causality. We now show here how these difficulties 
and the complication surrounding the total transverse response can be eliminated by 
changing to acausal boundary conditions. We show explicitly how this choice can 
eliminate the surface integral. Then we could show that the virtual solutions (2.5) are 
the complete forced transverse solutions; the solutions I11 (3.8) are the forced longi- 
tudinal solutions; the surfaces of singularity of (2.5) are dispersion relations for trans- 
verse normal modes; the surfaces of singularity of I11 (3.8) continue to be dispersion 
relations for the longitudinal modes; and these results are indeed valid for all wave 
vector directions. This consistent scheme is achieved only by rejecting causality (and 
the Kramer-Kronig relations) and limiting the theory to the infinite system. It 
says nothing about the coupling of external light to the system.? 

We replace the causal Green’s function exp(ik,r)r-l by 

+(exp(ik,y) + exp( - ikg)}y-l (2.31) 

and both w and k o  = wc-l are purely real, Nothing is now changed in the calcula- 
tions of either the virtual transverse or the virtual longitudinal modes except that 
J, (k ,  w )  and J l ( k ,  w )  both become real; then in particular mt2( w )  is given by I11 (2.4b) 
and is real when w is real.$ We now find, for example,§ that because of the phase 
factors in I11 (2.10), Z(x, w )  -+ 0 as c and d -+ cc providing only that the frequency 

t Mead (1960) has suggested that only by rejecting causality is it possible to accept the usual 
periodic boundary conditions imposed on crystalline modes (see also Deutsche and Mead 
1965). We find agreement between the Hopfield (1958) polariton theory and linear response 
theory with outgoing boundary conditions only by rejecting contributions to the extinction 
theorem in the response theory and interpreting the polariton theory as a causal theory 
(Bullough and Thompson 1970). 

$We work with the principal (physical) root of I11 (2 .4b)  for m t z :  this makes mt real when 
J , (k ,  w )  is when mtz > 0 as we assume. We note the possibility of additional roots in I11 9 2. 

3 The terms of I11 (2.10) are changed by ingoing boundary conditions. The  change is 
obtained by K O  + -ko and mt -+ -mt.  For the slab the combination is not zero for mixed 
ingoing-outgoing boundary conditions. 
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w has finite spread however small. That is 

lim lim - C(X, w’)do’  = 0. (2.32) 

It is intuitive that this argument and its result (2.32) must remain true however 
V -+ CO in each of three linearly independent directions. Thus the surface integral 
of the extinction theorem vanishes from the whole theory and all the consequences 
noted above now follow. 

This academic argument does not have the satisfactory physical content of that 
which leads to (2.22). We shall show later in this series that the acausal Green’s 
function (2.31) does not emerge from the quantal theory whilst the causal one does- 
although this is admittedly a consequence of an adiabatically switched in interaction 
(cf. I1 and Bullough et  al. 1968). We conclude the following: the total transverse 
response (2.22) is the proper physical description of the transverse response and the 
virtual modes are necessarily accompanied by the additional real modes. This is 
the most important physical result of the theory. The  virtual modes constitute a 
translationally invariant theory by, but only by the expedient of neglecting the real 
modes; and this is ‘virtual mode’ theory. There are no normal transverse modes and 
no solutions of the homogeneous fundamental integral equation 111 (2.1), although the 
modes which satisfy the dispersion relation are normal modes within the restrictions 
of the ‘virtual mode theory’. 

We can now summarize this $ 2  as follows. Current forced transverse modes can 
exist in a finite region V.  In  particular, if V is the parallel-sided slab a transverse 
current density mode with wave vector k parallel to the axis of V will excite transverse 
modes with the same wave vector k and polarization. Since k and w do not satisfy 
a dispersion relation they are virtual photon-like and we call them ‘virtual’ modes. 
However, because the virtual modes induce modes of wave number k, inside V (a 
free field), and because a free field cannot exist inside V ,  the virtual modes of wave 
vector k and frequency w are solutions of the fundamental integral equation I11 (2.1) 
only if these are accompanied by two modes of wave number m,k,: these are just 
sufficient to annihilate the free field inside V.  Because m,ko is determined by the 
transverse dispersion relation I11 (2.4b) at the frequency w these two modes are real 
photon-like and we call them ‘real’ modes. There is no reason why an externally 
imposed free field (incident light) should not be used to annihilate the modes of 
wave number K O  inside V instead. The  equations are linear and in our picture this 
free field generates modes of wave number m,ko inside V sufficient to eliminate the 
two real modes of that wave number which otherwise accompany each virtual mode 
labelled by k and w .  

The  total response function (2.22) therefore consists of two parts: the surface- 
independent virtual mode response which has the transverse dispersion relation as its 
surfaces of singularity; and the surface-dependent real response. The  real response 
is negligible only in the non-relativistic region where k 9 k, = wc- l  and becomes 
the total response when k -+ k,, the situation is relativistic, and the probe is light. 

We find that there are no acceptable transverse normal modes in a finite region 
as long as we retain outgoing boundary conditions and that it is not possible to con- 
struct a translationally invariant theory. There are formally acceptable transverse 
normal modes in an infinite system if causality is rejected by using mixed ingoing- 
outgoing boundary conditions. A translationally invariant theory which is internally 
consistent at the expense of causality or neglect of scattering can be set up as ‘virtual 



740 R. K.  Bullough 

mode theory’. This simply neglects the real modes in the total transverse response, 
and modes which satisfy the dispersion relation are now normal modes. Virtual mode 
theory is incapable of describing the interaction of a system with light since this 
couples to a system via the surface. The  results of I1 show that virtual mode theory 
has a natural and fundamental importance in the theory of bulk binding energy but 

The results in this section for the finite system are proved only when k is parallel 
to the axis of the slab V. We now complete our analysis of the solutions of the funda- 
mental integral equation I11 (2.1) by investigating oblique modes in the slab V. 

it is not a physical theory. 
h 

3. The oblique modes 

We now remove the restriction which lay on all the previous work that k was 
parallel to the axis of the slab V. We work with single-mode probes still and as in 
I11 3 2 it is now more convenient to work in x space rather than in k space. We have 
to consider all three types of probe, light (the free field) of I11 4 2, the charge- 
longitudinal current density probe of I11 $ 3 ,  and the transverse current density probe 
of $ 2  here; and we have also to investigate the oblique modes which correspond to 
the longitudinal normal (i.e. unforced) modes of I11 $ 2. 

The  theory of the transverse response to either transverse probe is very similar to 
that for the longitudinal modes which we give below. We shall merely quote the 
results therefore: we find that when the transverse probe is light the generalizations 
of I11 (2.14) and I11 (2.15) exhibit all the features of the macroscopic Maxwell theory 
without appeal to Maxwell boundary conditions on the surface of V :  Snell’s law 
emerges without any addition to the microscopic assumption of radiating boundary 
conditions and the Fresnel coefficients appear: the total internal reflection of two 
transverse real modes of wave number m,ko with the emission of an evanescent wave 
and no need of a forcing field like I11 (2.9) occurs. The microscopic theory thus 
entirely reproduces the observable optics of the macroscopic theory. 

It now follows that everything we have said about the current forced modes in the 
previous section still holds. A probing transverse current probe with wave vector 12 
induces a transverse virtual mode of wave vector k: this mode induces a mode of 
wave number k ,  via the surface integral of the extinction theorem: this induced free 
field can be extinguished by imposing an external free field: alternatively it can be 
extinguished by inducing two real modes proportional to 

(5+(k)  + A ( k  w ) a - ( k ) ) E , ( k ,  w )  (3.1) 
as in the $ 2 .  

It follows that formulae (2.19) and (2.22) are valid except that ,!?(E; k, U )  and 
A( k, w )  take forms appropriate to the passage of transverse waves with wave numbers 
k and m,ko striking the surface of V obliquely: the details can be inferred from the 
treatment of the longitudinal modes below. The action of the operators a + ( k )  is 
also slightly different: these ‘refract’ virtual modes of wave vector k to appropriate 
real modes with wave number m,ko and in addition a - ( k )  creates the real mode 
reflected from the back face of V b y  reversing the sign of the component of the wave 
vector created by a + ( k )  in the direction parallel to the axis of the slab. Thus there is 
nothing intrinsically new about the situation : the surface-dependent terms in (2.19) 
and (2.22) are more complicated; but an important result is that the response func- 
tion (2.9) for the virtual response is entirely unchanged. 
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There is one apparent difficulty as soon as we wish to remove the restriction to 
single mode probes : in the case that the probe is light we are concerned only with the 
real response, but even so the integral over modes k in (2.3) might appear to couple 
different modes. However, what now happens in the case of light is that every incident 
mode has the wave number k, of the free field and every induced real mode has wave 
number m,k,. Then the directions of the induced modes of wave number m,k, are 
‘refracted’ by the integral in (2.3), assigned wave number ko, and matched direction 
by direction against the modes of the incident field. Thus there is no difficulty but 
merely additional complication in the response consequent upon the greater complica- 
tion of the probe. 

In  the case of the current forced response we first find P,,(k,  U )  in response to 
E, (k ,  U ) :  this induces modes of wave number k, in ‘refracted directions’ via the 
integral of (2.3). This induced free field induces the real modes of wave number 
m,ko and the problem reduces as before to the solution of the integral equation I11 
(2.7) which is the extinction theorem. 

The case of the longitudinal modes needs explicit examination because of the situa- 
tion surrounding the longitudinal normal modes. We consider the single longitudinal 
mode of wave vector k in x space : 

P,exp(ik , x), P , x k  = 0. ( 3  4 
We use the notation 

= (ml> m 2 ,  m3)k0> m = (m12 + m22 + m32)1’2 (3.31 

m may or may not be the root of the longitudinal dispersion relation 111 (2.4a), but 
when it is it is our quantity m,. I n  I11 ( 2 . 7 ~ )  the terms 

( 3 . 4 4  

with? 
2TP, 

(1-m12-m2 2 ) 112 
q x ,  U )  = __ - [{m3 - (1 - m12 - m22)1’2) exp{ik,(m,x, + m2xz + m,d 

+ (1 - m12 - m22)1’2(d- x3)} - {m3 + (1 - m12 - m22)1’2} 

x exp{ik,(m,x, + m2xz - m3c + (1 - m12 - m22)1’2(c + x,)}]. (3.4b) 

We have assumed that V is the parallel-sided slab with axis along the 3-direction 
(the z-axis of the previous work). The result reduces to that of 111 (2.10) (longitu- 
dinal part only) when k lies along the axis of the slab now called the 3-axis. 

If we setf 
q = {ml, m2, (1 - m12 - m22)1/2} = (ql, 72, -q3) 

q‘ = {ml, m2, - ( I  -m12-m22)1,’2) = (VI,  ~ 2 , - q d  (3.5a) 

The integral involved has been evaluated by Darwin (1924). We suppose m # +1. 
$ If m is complex (and if it is ml, I11 ( 2 . 4 ~ )  seems to make it complex) it is not possible to 

make q a real unit vector or to set q = ~ $ j  with $j a real unit vector. This means that C(X, w) 
does not really have the wave number of the free field-a complication we do not understand 
at this time. 
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then, compactly, 

- (m3 + 73)exP(ik0? x>exP(-iko(m,-73)C)I. (3.5b) 

We now observe that if we are prepared to match this field of wave number K O  which 
has been generated by the longitudinal field (3.2) inside V by an imposed free (trans- 
verse) field inside and outside V there is no reason why we should not do it.? 

The  important point in this observation is the following: Z(x, w )  in (3.5b) is 
neither longitudinal nor transverse since q is not parallel to k (and q’ is certainly 
not along - k) .  However, the field (3 .4~)  inside V is transverse and of wave number 
k, because the tensor operator v + K O 2  U ensures that every mode of wave number 
k, is transverse. Thus the field of ( 3 . 4 ~ )  inside V is a free field; and this could in 
principle be extinguished by an externally imposed free field. Thus there is actual 
coupling between incident (transverse) light and the longitudinal modes P,exp( ik. X) 
inside V. This seems to mean that longitudinal modes can in principle be excited 
by light providing that light arrives obliquely to the surface of the region V. 

It is now clear why the extinction theorem vanished from the problem of longi- 
tudinal modes when k lay along the axis of the slab. For this corresponds to 
m, = m2 = 0, m3 # 0 in (3.4b)) and in this case P, is along the 3-axis so that the 
field (3 .4~)  is zero. This is a unique result for the different directions of h and the 
axis of the slab is therefore a singular direction for k .  

If the mode (3.2) is a charge-longitudinal current forced mode as was considered 
in I11 5 3 the situation is now clear. The  primary probe p(k, w )  induces the secondary 
probe E,(k ,  U )  (cf. I11 (3 .2~)) :  this longitudinal field induces P,(k, U )  according to 
I11 (2.8). Then the longitudinal P,(k, U )  (viewed here as a single mode of wave vector 
k in x space) induces a transverse field in Vdetermined by equations (3.4). Since this 
is transverse and of wave number k,,$ it is a free field and the argument of 5 2 ap- 
plies. It follows that a transverse mode of wave number mtko is induced inside V 
and (presumably, because we have not checked the details) is accompanied by a 
reflected wave: since k is oblique, q and q‘, the direction of the reflected wave vector, 
are oblique, and we can expect the two oblique modes with wave vectors 

m,k, = {ml ,  m2, (mt2-m12-m,2)1’2)ko, m,’k, = (ml,tm,, -(mt2-m12-m22)1/2)k0 

Thus it follows that an oblique longitudinal probe of wave vector k stimulates a 
virtual longitudinal mode response with wave vector k and two transoerse real modes 
with wave number m,k,. The longitudinal response relation I11 (3.15) is therefore 
replaced by an expression of the form of (2.22), namely 

w ) { o ~ + ( ~ ) + A , o , - ( ~ ) )  

t In  this case m is mr and I11 ( 2 . 4 ~ )  applies: longitudinal modes with k,  w free do not 
occur at all without current forcing. 

2 Compare the footnote 2 on p. 741 and note here that k E m,k, is a free variable and so 
real here providing it can still be matched, again very much as in (3.4), with the mt of the real 
modes, This mt is complex through scattering. 
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Here cs,*(k) convert k to m,ko and refract k simply (+), or both refract it and reflect 
it (-);  but they also introduce transverse polarizations perpendicular to m,ko( +) 
and m,’k,( -). The  polarizations lie in the planes of the wave vectors and the surface 
normal and are coplanar: m,k,, mt’ko and the surface normal are coplanar. The  
case k = K O  needs special treatment which we have not given: the field (3 .4~)  diverges 
there.? The  formula does not apply to the zeros of E,(k, w )  for the reasons we des- 
cribe in the next paragraph. 

We have not evaluated the terms S,(X; k, w )  and A, (k ,  w )  in (3.6) explicitly; 
but S,( C; k, w )  = 0 when k is axial and the details of the oblique case are implicit 
in the following analysis. This concerns the case of the longitudinal modes which 
satisfy the longitudinal dispersion relation 111 (2 .4~) .  Here it is not possible to create 
transverse modes to eliminate the surface integral accompanying all but axial normal 
modes: the reason for this is that frequencies w which are acceptable longitudinal 
frequencies are zeros of ~ ~ ( k ,  w )  and hence very close to the zeros of m,(w) = 0 ;  
when m,(w) = 0 no transverse mode with wave number m,(w)k,  can propagate. 
Obviously we have not quite excluded the possibility of a very long-wavelength 
transverse excitation of the proper energy eliminating the surface integral and so 
accompanying the longitudinal modes which satisfy the dispersion relation; but this 
apart we are driven to the inescapable conclusion that the oblique longitudinal modes 
satisfying 111 ( 2 . 4 ~ ~ )  are acceptable modes only when there is an externally imposed 
free field. For the free field generated by these modes inside V does not consist simply 
of light leaving V outside V and some light must enter V.  We avoided this situation 
in $ 2  by introducing the real modes but cannot do this here. The  physics of the 
situation seems to be that oblique longitudinal modes can radiate from the surface 
of V :  the longitudinal dipoles are not in phase in a plane normal to the dipolar axis. 
Unfortunately we have not yet understood the processes of energy transport here. 

We now give a precise analysis of the situation when the internal longitudinal 
modes satisfy the dispersion relation I11 (2.4u), V is the slab, and a free field is im- 
posed both inside and outside V.  We consider a single oblique mode of the free field ; 
and this induces two longitudinal modes inside V as follows. We combine the single 
mode (3.2) with a second mode of vector k‘ = (ml ,  m2, -m3)ko. Since 
lk’l = 1 kl = mko, the structure-dependent quantity J , (k ,  w )  is unchanged (a result of 
course implicit in all of this discussion of oblique modes). The second mode aug- 
ments the proposed solution Z(x, w )  in (3.4) by 

ZTP,’ 
Z’(x,  w )  = __ [(m3’-q3)exp(ikoq’ . x)exp{ik0(m3’+y3)d}-(m3’+y3) 

713 

x exp(ik,q . x)exp{ - iko(m3’ - - ~ ~ ) c } ] .  (3.7) 

If we include the transversality factor we find we can eliminate the mode 
exp(ik,q’ , x) by setting 

713 

Since P, lies along f and P,‘ along f ’  we need 

t If p(k ,  w )  = 2 ~ 4 w  - k. v ) ,  ko < krtc-l < k ,  and no problem arises. 
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Since 6, 6‘) q, q’ all lie in the same plane,? both vectors in (3.9) are in that plane and 
orthogonal to q‘: hence (3.9) can be satisfied. We can therefore define a reflection 
coefficient A, by 

I( U -q ’q ’> .4 (m3  --q3)exp(2im,li:,d) 

KU-rl’Vl’) k’l(m3-713) 
A, = A- (3.10) 

and P1’ = Alp,  in conformity with previous usage. 
We now have remaining in the expression ( 3 . 4 ~ )  just 

+ &(m3 -~/~)exp(ili:,(m, +q3)c$’1exp(ili:,q . x). (3.11) 

This is a wave in the plane of 6, 6’ and q transaerse to q. Then the longitudinal 
mode pair 

P ,  = Pl{6 exp(ik . x)+.A&’exp(ik’. x)} (3.12) 

is a valid mode pair if and only if there is a transverse electric field E incident on the 
slab. This we write as 

E = E,{( U -qq) . 6) exp(ili:,y . x) (3.13) 

which is transverse to q and lies in the plane of q and 6.7 Then (3.12) is a valid mode 
pair if li: and w satisfy the longitudinal dispersion relation I11 ( 2 . 4 ~ ~ )  and 

(U  -qq) . [E& - 2 ~ ~ ~ { ( m ~ ~  - 1)q3}-1[(m3 + 7 1 ~ )  exp(- ili:0(m3 -7j3)c)6 

+ 4 ( m 3  -q3) exp{iko(m3 +q3)d}6’] ]  = 0.  (3.14) 

We have shown that the oblique modes of the type considered in I, which satisfy 
the longitudinal dispersion relation first obtained in that paper and which is equation 
I11 (2.4a), can be maintained by an externally imposed (transverse) free field (light). 
We have scrutinized the argument from (3.7) to (3.14) very carefully and find by 
trial of alternatives that none but necessary assumptions have been made in finding 
this solution. Hence we cannot avoid from this analysis the conclusion that the longi- 
tudinal oblique modes will run if they are forced by incident and only if they are 
forced by incident light. The  oblique longitudinal modes are not normal modes 
therefore, and the normal modes along the axis of V are singular normal modes. 

The  argument from (3.7) to (3.14) would seem to lead to the important physical 
result that the longitudinal oblique modes can be stimulated by external light and 
could be observed this way. However, there are a number of points which remain 
obscure. We have not investigated the energy transport (where problems arise in 
defining the fields carrying the energy) ; but we note that since the singular normal 
modes cannot carry energy across the surface of V it is not clear how the oblique modes 
can either. Further, if the oblique longitudinal modes can be stimulated by external 
light the question of uniqueness arises since there may be no reason to choose the 
longitudinal excitations in preference to the transverse ones even if the energies and 
polarization are right.$ 

t The plane lies perpendicular to the direction (ml ,  -mZ, and includes the 3-axis. 
$ According to (3.13) the polarizatio2 is in the plane of k and q (and the 3-axis) and is 

transverse to q, The refraction of q to k depends on ml. Snell’s law holds: reflection of the 
incident wave and evanescence inside V seems possible if mi is small enough. 
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I n  the case that the longitudinal excitations have characteristic energies at the 
zeros of m,(w) (so that the roots w do not depend on k )  there is no problem of this 
kind since the transverse modes cannot run, as we have already noted, and the longi- 
tudinal modes are the only possible response to light of the characteristic energy. 
Indeed if m, = 0 we would find from an expression like (5.4b) in the transverse case 
that we need a field normally incident on the surface of V since m, = m2 = 0. I n  
this case we know already (see I11 3 2) that the light is totally externally reflected from 
the surface of V.  Thus light stimulates neither oblique or axial transverse modes, 
but from our analysis, can stimulate longitudinal modes. The  problem of uniqueness 
is eliminated therefore, and we also see that the axial direction is a special direction 
and to that extent see why the axial longitudinal mode is normal. 

However this argument cannot be quite correct since equation I11 (3.4a) is a 
dispersion relation and not an equation for characteristic energies, even though it 
does not depend strongly on k = m,k,.  Indeed this is absolutely essential, since 
otherwise k is arbitrary. However, if k mlk, ,  w determines k by the dispersion 
relation and then k, = wc-l and k fix A, by (3.10) with (3.5a), and then (3.14) 
fixes P ,  and P,’. This of course assumes that the root (or roots) for m, are not incom- 
patible with the argument of (3.7) to (3.14) and indeed that there are physically sen- 
sible roots for m, when w is real. 

There is obviously a very intricate situation here which we have not quite un- 
ravelled. It looks as though the longitudinal modes can be stimulated by incident light 
and indeed must be stimulated by light to run at all. But we can accurately summarize 
the arguments of this section by saying only that they do not exclude the possibility 
of stimulating the longitudinal modes by light providing the incident wave vector 
is oblique to the surface and the polarization is right. 

The  conclusions of this 4 3 are that as far as transverse modes are concerned 
neither the theory of the current forced modes, nor of those forced by light is changed 
in essence from the work of 4 2 and I11 5 2 respectively. In  particular, when the 
probe is light all the results of applying Maxwell’s macroscopic boundary conditions 
at the surface of V (like Snell’s law, for example) are obtained from the microscopic 
theory with outgoing boundary conditions. And when the probe is a transverse 
current the form of the total response (equation (2.22)) is unchanged but s( C, k ,  w )  
and h(k, w )  are changed in detail to take into account the changed surface geometry: 
both real and virtual modes are induced as before. 

The  oblique longitudinal modes are more complicated than those considered in 
5 2 and in $ 3  of 111. The  oblique, charge-current induced, virtual photon-like 
(virtual) longitudinal modes are accompanied by two transverse real modes of wave 
number m,k,: the total longitudinal response therefore takes the form of the total 
transverse response and can be exhibited as in equation (3.6). In  so far as the modes 
which satisfy the longitudinal dispersion relations are modes of characteristic energy 
and frequency (and this is apparently a good approximation) these longitudinal modes 
cannot be accompanied by transverse real modes and can be maintained only if an 
external free field is imposed. Thus the theory strongly suggests that the oblique 
longitudinal modes can be stimulated by light and certainly does not exclude this 
possibility. If this is so both the (oblique) longitudinal modes and the transverse 
modes of I are forced modes satisfying dispersion relations. Thus they are now placed 
on the same conceptual footing. 

Our knowledge of the oblique modes now enables us to look quickly at the normal 
mode problem again. This we do next. 
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4. Modes in cavities 
The main point of this section is to show how far we can reproduce in present 

terms the conventional macroscopic theory of normal electromagnetic modes in a 
box of finite dimensions. The  theory is important because electromagnetic cavities 
are important both in laser theory, for example, (Lamb 1964), and as a device for 
quantizing the fields. Although the arguments so far in this series are classical, a 
quantal basis has been reported (Bullough et al. 1968 and Bullough and Hynne 
1968). We shall find that the theory is a field theory quantized in a box much larger 
than the region V containing matter. In  this section we are interested in a box com- 
pletely filled by matter.t 

A set of normal modes in a macroscopic box of dielectric of real refractive index 
m, satisfies the macroscopic boundary condition Etan = 0 where Etan is the Maxwell 
E field component tangential to the surface of the box.$ For a rectangular box with 
sides perpendicular to the coordinate axes such transverse normal modes are, com- 
ponent wise and with appropriate phases fixed by chosen constants ci(i = 1, 2, 3)  

E ,  = Elo cos k,(x+ cl) sin k, ( y  + c,)sin k, (x  + c,) 

E ,  = E,O sin k, (x  + c,) sin k,(y + e,) cos k,(x + e,) 

E ,  = E,O sin k , ( x  + c1) cos k,(y + c,) sin k,(x + c,) 

(4.1) 

the vector k = (k,, k,, k,) is real. This field satisfies an equation like (2.2%) namely 

V2E,(x ,  w ) + K ~ ~ E , ( x ,  W )  = -4Tko2?2Pt(X, U )  (4.2) 

if, and only if, k = jkl = m,ko and (m,2-1)Et = 4nnPt; and it satisfies divE = 0 
if, and only if, it satisfies the transversality condition k. E o  = 0. 

The  transversality condition means that there are two arbitrary independent 
transverse polarizations. The  field satisfies the boundary conditions on the box 
-cl < x < d,, -e2 < y < d,, - c 3  6 x < d, if, and only if 

k, = mLkO = 2nv,(c,+dt)-l, i =  1 , 2 , 3  (4.3) 

and the U ,  are integers. The  modes are trivial normal modes if any two of the vi are 
zero. 

A set of longitudinal normal modes satisfying the same boundary conditions is 

E ,  = E ,  = k, cos k, (x  + c,) sin k,(y + e,) sin k,(x + c,) 

E,  = k2 sin k l ( x  + c,) cos k,(y + c2 )  sin k, (x  + c,) r E ,  = k, sin k, (x  + c,) sin k,(y +e,) cos k,(z  + c,). (4.4) 

These satisfy curlE, = 0, div E, = - 4 m  divP,,§ and the surface conditions if 
(4.3) holds and if P, is appropriately defined. This is the Maxwell phenomenological 
theory. 

In  the microscopic theory it is the modes of P, and Pt which are the natural modes. 

t Remarks on this appear in the Appendices of Bullough (1969 b). 
$ We consider this choice of boundary conditions rather than periodic ones. 
$ This condition ensures that the Maxwell D vector is identically zero and that the dielectric 

constant E is identically zero: the condition E(W) = 0 fixes the possible w as characteristic 
frequencies. Equation (4.3) fixes the k .  
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For present purposes we shall therefore define formal Maxwell fields by 

E, , , (%,  U )  = Eo($, w ) + n  F(x, x’; w )  . Pl , t (~ ’ ,  w )  dx‘. (4.5) 1, 
So far this definition is incomplete in two ways: we have not yet defined E o ( x ,  w )  
and the integral does not automatically exist. 

We now propose the natural transverse normal P modes 

Pt(x, w )  = P,,o cos mltko(x+ cl) sin mztko(y + c 2 )  sin m3tkO(z+ c 3 )  
PZ,O sin m,,ko(x + c,) cos mztko(y + ca)  sin m3,kO(z + cg) 

P32 sin mltko(x + cl) sin mz,ko(y + c z )  cos m3tko(z+ c3) ( 4 . 6 ~ )  

m, = (m,,” + m2t2 + m3,”)’” 

i 
with the transverse condition 2; c l  mitPi, = 0. In  order to make 

real we shall choose 

F( x, x ’  ; w )  = &( V V + ko2 U)[{exp( ikor) + exp( - ikO~))~-’] .  

Thus we assume acausal boundary conditions as in (2.31). Then the fluctuations 
contributing to m, in the J, do not scatter. 

We also propose the natural longitudinal normal P modes 

Pi(%, U )  = P,omllko cos m,,ko(x + c1) sin m2,k,(y + cz) sin m3,ko(x + c,) 

PLomzlkO sin m,,ko(x + c1) cos m2,k0(y + c2) sin m3,ko(z + c3) ( Pzom,,ko sin m,,k,(x+ cl) sin mz,ko(y + c z )  cos m 3 , k o ( ~  + c3).  (4.6b) 

The acausal boundary conditions ensure that the fluctuations in the J, do not scatter 
and we can expect real roots for m,. 

We have still to define the integral in (4.5) and this we do as follows. We set 

I v F ( x ,  x‘; w )  . Pr,,(x’, w )  dx’ = F(x, x‘; w )  . PZ,,(X’, w )  dx’ 

+ 1, F(x, x‘; w )  . P l , t ( x ’ ,  w )  dx’ (4.7) 

where (as in paper I) U is a vanishingly small sphere about x. The first integral on 
the right-hand side of (4.7) is now defined as a conditionally convergent integral, but 
the second is not. We therefore define this integral in the generalized function sense 
by defining 1, F(x, x‘;  w )  dx’ = - $rU. (4.8) 

If the tensor integral exists component by component its trace must be the trace of 
- (47~13) U ; and if it exists it can only be a scalar multiple of the unit tensor U since 
o is spherically symmetrical. This definition is employed systematically and apparently 
without internal inconsistency throughout the microscopic theory : we use it in the 
following paper V and elsewhere (cf. Bullough et al. 1968). 

A6 
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With this definition we find that 

(4.9a) 

E,(%,  w )  = -4rnP,(x, w ) .  (4.9b) 

Thus these choices (4.6) in the microscopic theory reproduce the whole of the macro- 
scopic theory of (4.1)-(4.4) providing k = mtko in the transverse case and k = nzlko 
in the longitudinal case. We do not demand m,(w) = 0 as we would in the macro- 
scopic theory and indeed the dispersion relation for m,, I11 (2.4a), shows that the 
condition m,( w )  = 0 is irrelevant. However the important point of difference is that 
we have still to satisfy the extinction theorem. If 

v x v x C(x, 0) = (OO+K,2U). Z(x, w )  

of $ 3  does not vanish at all points x inside the cavity V ,  we would need to choose 
Eo($, w )  in (4.5) to be a non-vanishing free field just sufficient to eliminate this other 
vector field everywhere in V. 

Unfortunately the only example we have been able to handle term by term in 
detail is that of an approximation to a cavity consisting of a superposition of three 
orthogonal parallel-sided slabs. In  this case V x v x C(x, w )  certainly does not 
vanish everywhere inside V for either of the dipole fields (4.6). This must be a con- 
sequence of the approximation, however, for the following argument shows that 
v x C(x, w )  itself vanishes for the longitudinal modes (4.6b) when the cavity is the 
actual cavity -c1 < x < d,, etc. 

The  longitudinal dipole field (4.6b) satisfies v x P, = 0 everywhere inside V and 
P, is everywhere normal to the surface E of V.  By taking the operator (v v + ko2 U) 
outside the integral of (4.5) we immediately find that the curl of this integral is pro- 
portional to 

exp( ikor) 
x PI($’, w )  dx’ 

and this volume integral vanishes since d S x P ,  vanishes everywhere on X and 
v x P, = 0 inside V. On the other hand the arguments for the extinction theorem 
also show that the integral of (4.5) is also proportional to 

(VV++O2U) * {AP,(x ,  U ) +  Z(x, 0)) 
with A independent of x. Then since 77 x P, (x ,  w )  = 0 it follows that 
v x C(x, w )  = 0 which was to be proved. It follows that E ,  defined by (4.5) satisfies 
both (4.9b) and curlE, = v x E ,  = 0 when but only when E o ( x ,  w )  = 0. Then 
P ,  and E ,  together reproduce the conventional macroscopic theory of longitudinal 
normal modes inside a cavity. 

Two points are these: the result is achieved by adopting acausal boundary con- 
ditions which (we suppose) are sufficient to make m, real; further the result demands 
that the tangential component of P,, and hence implicitly of E, ,  vanishes on the 
surface E of V and does not apply to the case of cyclic boundary conditions. We 
have not been able to show a comparable result for transverse modes, namely that 
(v + k o 2  U). C(x, w )  vanishes when Pt (x ,  U )  is given by (4.6a), but the result is 
plausible since P,(x ,  w )  is everywhere normal to the surface X of V and should not 
radiate from it. 
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We can therefore conclude that there are no optical normal modes (other than the 
singular axial longitudinal mode) in the parallel-sided slab and that the solutions we 
have obtained in this case are always unique. We also (very probably) have the 
important result that there are no optical normal modes inside a proper three-dimen- 
sional cavity if outgoing boundary conditions are assumed. (This result is not actually 
proved but certainly the longitudinal modes (4.6b) are not normal as soon as m, is 
complex). Thus all solutions of the fundamental inhomogeneous integral equation 
I11 (2.1) which invokes outgoing boundary conditions are unique. We have also 
shown that there are longitudinal normal modes in such a cavity if acausal mixed 
ingoing-outgoing boundary conditions are assumed. These results all seem very 
plausible and wholly support the findings of § 2. 

It is interesting to note that physical boundary conditions are presumably causal 
ones. We show in a following paper that these are outgoing. Thus real cavity modes 
exist only by adjusting to their own radiation back-scattered from the surface of 
the cavity. The  interesting question of how acausal boundary conditions emerge this 
way has not been solved. 

The  Fabry-Perot cavity (cf. Heavens 1964-pp. 31-7) is a special case since this 
is exactly our case of the parallel-sided slab. A small energy loss occurs here as 
radiative scattering but the dominant dissipative mechanism is via the surface integral 
of the optical extinction theorem. This emphasizes the importance of the theorem 
to cavity theory. 

I n  the following paper V we focus entirely on the virtual modes and the 'virtual 
mode theory' of 5 2 which simply omits the surface integral of the extinction theorem 
from the theory. We summarize the results of the papers 111, IV and V there since 
the paper V completes our analysis of the classical integral equation which is equa- 
tion I11 (2.1). 
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